Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0301519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578751

RESUMO

Rice blast disease, caused by the fungus Magnaporthe oryzae, poses a severe threat to rice production, particularly in Asia where rice is a staple food. Concerns over fungicide resistance and environmental impact have sparked interest in exploring natural fungicides as potential alternatives. This study aimed to identify highly potent natural fungicides against M. oryzae to combat rice blast disease, using advanced molecular dynamics techniques. Four key proteins (CATALASE PEROXIDASES 2, HYBRID PKS-NRPS SYNTHETASE TAS1, MANGANESE LIPOXYGENASE, and PRE-MRNA-SPLICING FACTOR CEF1) involved in M. oryzae's infection process were identified. A list of 30 plant metabolites with documented antifungal properties was compiled for evaluation as potential fungicides. Molecular docking studies revealed that 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin exhibited superior binding affinities compared to reference fungicides (Azoxystrobin and Tricyclazole). High throughput molecular dynamics simulations were performed, analyzing parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds, contact analysis, Gibbs free energy, and cluster analysis. The results revealed stable interactions between the selected metabolites and the target proteins, involving important hydrogen bonds and contacts. The SwissADME server analysis indicated that the metabolites possess fungicide properties, making them effective and safe fungicides with low toxicity to the environment and living beings. Additionally, bioactivity assays confirmed their biological activity as nuclear receptor ligands and enzyme inhibitors. Overall, this study offers valuable insights into potential natural fungicides for combating rice blast disease, with 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin standing out as promising and environmentally friendly alternatives to conventional fungicides. These findings have significant implications for developing crop protection strategies and enhancing global food security, particularly in rice-dependent regions.


Assuntos
Ascomicetos , Fungicidas Industriais , Magnaporthe , Oryza , Ácido Quínico/análogos & derivados , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Oryza/microbiologia , Flavonoides/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
J Leukoc Biol ; 115(4): 723-737, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38323674

RESUMO

The molecular mechanism of COVID-19's pathogenic effects in leukemia patients is still poorly known. Our study investigated the possible disease mechanism of COVID-19 and its associated risk factors in patients with leukemia utilizing differential gene expression analysis. We also employed network-based approaches to identify molecular targets that could potentially diagnose and treat COVID-19-infected leukemia patients. Our study demonstrated a shared set of 60 genes that are expressed differentially among patients with leukemia and COVID-19. Most of these genes are expressed in blood and bone marrow tissues and are predominantly implicated in the pathogenesis of different hematologic malignancies, increasingly imperiling COVID-19 morbidity and mortality among the affected patients. Additionally, we also found that COVID-19 may influence the expression of several cancer-associated genes in leukemia patients, such as CCR7, LEF1, and 13 candidate cancer-driver genes. Furthermore, our findings reveal that COVID-19 may predispose leukemia patients to altered blood homeostasis, increase the risk of COVID-19-related liver injury, and deteriorate leukemia-associated injury and patient prognosis. Our findings imply that molecular signatures, like transcription factors, proteins such as TOP21, and 25 different microRNAs, may be potential targets for diagnosing and treating COVID-19-infected leukemia patients. Nevertheless, additional experimental studies will contribute to further validating the study's findings.


Assuntos
COVID-19 , Leucemia , Humanos , COVID-19/genética , Perfilação da Expressão Gênica , Leucemia/genética , Biologia Computacional , Fatores de Risco , Expressão Gênica
4.
Front Microbiol ; 14: 1291868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075876

RESUMO

The Varicella Zoster Virus (VZV) presents a global health challenge due to its dual manifestations of chickenpox and shingles. Despite vaccination efforts, incomplete coverage, and waning immunity lead to recurrent infections, especially in aging and immunocompromised individuals. Existing vaccines prevent chickenpox but can trigger the reactivation of shingles. To address these limitations, we propose a polyvalent multiepitope subunit vaccine targeting key envelope glycoproteins of VZV. Through bioinformatics approaches, we selected six glycoproteins that are crucial for viral infection. Epitope mapping led to the identification of cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B cell linear (LBL) epitopes. Incorporating strong immunostimulants, we designed two vaccine constructs, demonstrating high antigenicity, solubility, stability, and compatibility with Toll-like receptors (TLRs). Molecular docking and dynamics simulations underscored the stability and affinity of the vaccine constructs with TLRs. These findings lay the foundation for a comprehensive solution to VZV infections, addressing the challenges of incomplete immunity and shingles reactivation. By employing advanced immunoinformatics and dynamics strategies, we have developed a promising polyvalent multiepitope subunit vaccine candidate, poised to enhance protection against VZV and its associated diseases. Further validation through in vivo studies is crucial to confirm the effectiveness and potential of the vaccine to curb the spread of VZV. This innovative approach not only contributes to VZV control but also offers insights into tailored vaccine design strategies against complex viral pathogens.

5.
PLoS One ; 18(9): e0287416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682972

RESUMO

Human T-lymphotropic virus (HTLV), a group of retroviruses belonging to the oncovirus family, has long been associated with various inflammatory and immunosuppressive disorders. At present, there is no approved vaccine capable of effectively combating all the highly pathogenic strains of HTLV that makes this group of viruses a potential threat to human health. To combat the devastating impact of any potential future outbreak caused by this virus group, our study employed a reverse vaccinology approach to design a novel polyvalent vaccine targeting the highly virulent subtypes of HTLV. Moreover, we comprehensively analyzed the molecular interactions between the designed vaccine and corresponding Toll-like receptors (TLRs), providing valuable insights for future research on preventing and managing HTLV-related diseases and any possible outbreaks. The vaccine was designed by focusing on the envelope glycoprotein gp62, a crucial protein involved in the infectious process and immune mechanisms of HTLV inside the human body. Epitope mapping identified T cell and B cell epitopes with low binding energies, ensuring their immunogenicity and safety. Linkers and adjuvants were incorporated to enhance the vaccine's stability, antigenicity, and immunogenicity. Initially, two vaccine constructs were formulated, and among them, vaccine construct-2 exhibited superior solubility and structural stability. Molecular docking analyses also revealed strong binding affinity between the vaccine construct-2 and both targeted TLR2 and TLR4. Molecular dynamics simulations demonstrated enhanced stability, compactness, and consistent hydrogen bonding within TLR-vaccine complexes, suggesting a strong binding affinity. The stability of the complexes was further corroborated by contact, free energy, structure, and MM-PBSA analyses. Consequently, our research proposes a vaccine targeting multiple HTLV subtypes, offering valuable insights into the molecular interactions between the vaccine and TLRs. These findings should contribute to developing effective preventive and treatment approaches against HTLV-related diseases and preventing possible outbreaks. However, future research should focus on in-depth validation through experimental studies to confirm the interactions identified in silico and to evaluate the vaccine's efficacy in relevant animal models and, eventually, in clinical trials.


Assuntos
Simulação de Dinâmica Molecular , Entorses e Distensões , Humanos , Animais , Vacinas Combinadas , Simulação de Acoplamento Molecular , Retroviridae
6.
Heliyon ; 9(6): e17026, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484251

RESUMO

Candida auris is a serious health concern of the current world that possesses a serious global health threat and is emerging at a high rate. Available antifungal drugs are failing to combat this pathogen as they are growing resistant to those drugs and some strains have already shown resistance to all three available antifungal drugs in the market. Hence, finding alternative therapies is essential for saving lives from this enemy. To make the development of new treatments easier, we conducted some in silico study of this pathogen to discover possible targets for drug design and also recommended some possible metabolites to test in vivo circumstances. The complete proteome of the representative strain was retrieved, and the duplicate, non-essential, human homologous, non-metabolic, and druggable proteins were then eliminated. As a result, out of a total of 5441 C. auris proteins, we were able to isolate three proteins (XP 028890156.1, XP 028891672.1, and XP 028891858.1) that are crucial for the pathogen's survival as well as host-non-homolog, metabolic, and unrelated proteins to the human microbiome. Their subcellular locations and interactions with a large number of proteins (10 proteins) further point to them being good candidates for therapeutic targets. Following in silico docking of 29 putative antifungals of plant origin against the three proteins we chose, Caledonixanthone E, Viniferin, Glaucine, and Jatrorrhizine were discovered to be the most effective means of inhibiting those proteins since they displayed higher binding affinities (ranging from -28.97 kcal/mol to -51.99 kcal/mol) than the control fluconazole (which ranged between -28.84 kcal/mol and -41.15 kcal/mol). According to the results of MD simulations and MM-PBSA calculations, Viniferin and Caledonixanthone E are the most effective ligands for the proteins XP 028890156.1, XP 028891672.1, and XP 028891858.1. Furthermore, they were predicted to be safe and also showed proper ADME properties.

7.
Sci Rep ; 13(1): 9702, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322049

RESUMO

Human Respiratory Syncytial Virus (RSV) is one of the leading causes of lower respiratory tract infections (LRTI), responsible for infecting people from all age groups-a majority of which comprises infants and children. Primarily, severe RSV infections are accountable for multitudes of deaths worldwide, predominantly of children, every year. Despite several efforts to develop a vaccine against RSV as a potential countermeasure, there has been no approved or licensed vaccine available yet, to control the RSV infection effectively. Therefore, through the utilization of immunoinformatics tools, a computational approach was taken in this study, to design a multi-epitope polyvalent vaccine against two major antigenic subtypes of RSV, RSV-A and RSV-B. Potential predictions of the T-cell and B-cell epitopes were followed by extensive tests of antigenicity, allergenicity, toxicity, conservancy, homology to human proteome, transmembrane topology, and cytokine-inducing ability. The peptide vaccine was modeled, refined, and validated. Molecular docking analysis with specific Toll-like receptors (TLRs) revealed excellent interactions with suitable global binding energies. Additionally, molecular dynamics (MD) simulation ensured the stability of the docking interactions between the vaccine and TLRs. Mechanistic approaches to imitate and predict the potential immune response generated by the administration of vaccines were determined through immune simulations. Subsequent mass production of the vaccine peptide was evaluated; however, there remains a necessity for further in vitro and in vivo experiments to validate its efficacy against RSV infections.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Criança , Humanos , Simulação de Acoplamento Molecular , Vacinas Combinadas , Epitopos de Linfócito B , Anticorpos Antivirais
8.
Comput Biol Med ; 158: 106855, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37040675

RESUMO

The molecular mechanism of the pathological impact of COVID-19 in lung cancer patients remains poorly understood to date. In this study, we used differential gene expression pattern analysis to try to figure out the possible disease mechanism of COVID-19 and its associated risk factors in patients with the two most common types of non-small-cell lung cancer, namely, lung adenocarcinoma and lung squamous cell carcinoma. We also used network-based approaches to identify potential diagnostic and molecular targets for COVID-19-infected lung cancer patients. Our study showed that lung cancer and COVID-19 patients share 36 genes that are expressed differently and in common. Most of these genes are expressed in lung tissues and are mostly involved in the pathogenesis of different respiratory tract diseases. Additionally, we also found that COVID-19 may affect the expression of several cancer-associated genes in lung cancer patients, such as the oncogenes JUN, TNC, and POU2AF1. Moreover, our findings suggest that COVID-19 may predispose lung cancer patients to other diseases like acute liver failure and respiratory distress syndrome. Additionally, our findings, in concert with published literature, suggest that molecular signatures, such as hsa-mir-93-5p, CCNB2, IRF1, CD163, and different immune cell-based approaches could help both diagnose and treat this group of patients. Altogether, the scientific findings of this study will help formulate appropriate management measures and guide the development of diagnostic and therapeutic measures for COVID-19-infected lung cancer patients.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroRNAs , Pneumonia , Humanos , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , COVID-19/genética , MicroRNAs/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/genética , Fatores de Risco , Regulação Neoplásica da Expressão Gênica/genética , Pulmão
9.
J Biomol Struct Dyn ; 41(3): 833-855, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617426

RESUMO

Human cytomegalovirus (HCMV) is a widespread virus that can cause serious and irreversible neurological damage in newborns and even death in children who do not have the access to much-needed medications. While some vaccines and drugs are found to be effective against HCMV, their extended use has given rise to dose-limiting toxicities and the development of drug-resistant mutants among patients. Despite half a century's worth of research, the lack of a licensed HCMV vaccine heightens the need to develop newer antiviral therapies and vaccine candidates with improved effectiveness and reduced side effects. In this study, the immunoinformatics approach was utilized to design a potential polyvalent epitope-based vaccine effective against the four virulent strains of HCMV. The vaccine was constructed using seven CD8+ cytotoxic T lymphocytes epitopes, nine CD4+ helper T lymphocyte epitopes, and twelve linear B-cell lymphocyte epitopes that were predicted to be antigenic, non-allergenic, non-toxic, fully conserved, and non-human homologous. Subsequently, molecular docking study, protein-protein interaction analysis, molecular dynamics simulation (including the root mean square fluctuation (RMSF) and root mean square deviation (RMSD)), and immune simulation study rendered promising results assuring the vaccine to be stable, safe, and effective. Finally, in silico cloning was conducted to develop an efficient mass production strategy of the vaccine. However, further in vitro and in vivo research studies on the proposed vaccine are required to confirm its safety and efficacy.Communicated by Ramaswamy H. Sarma.


Assuntos
Citomegalovirus , Simulação de Dinâmica Molecular , Recém-Nascido , Humanos , Simulação de Acoplamento Molecular , Epitopos de Linfócito T , Epitopos de Linfócito B , Vacinas de Subunidades , Biologia Computacional/métodos
10.
Microbiol Spectr ; 10(5): e0115122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094198

RESUMO

Epstein-Barr virus (EBV) is a lymphotropic virus responsible for numerous epithelial and lymphoid cell malignancies, including gastric carcinoma, Hodgkin's lymphoma, nasopharyngeal carcinoma, and Burkitt lymphoma. Hundreds of thousands of people worldwide get infected with this virus, and in most cases, this viral infection leads to cancer. Although researchers are trying to develop potential vaccines and drug therapeutics, there is still no effective vaccine to combat this virus. In this study, the immunoinformatics approach was utilized to develop a potential multiepitope subunit vaccine against the two most common subtypes of EBV, targeting three of their virulent envelope glycoproteins. Eleven cytotoxic T lymphocyte (CTL) epitopes, 11 helper T lymphocyte (HTL) epitopes, and 10 B-cell lymphocyte (BCL) epitopes were predicted to be antigenic, nonallergenic, nontoxic, and fully conserved among the two subtypes, and nonhuman homologs were used for constructing the vaccine after much analysis. Later, further validation experiments, including molecular docking with different immune receptors (e.g., Toll-like receptors [TLRs]), molecular dynamics simulation analyses (including root means square deviation [RMSD], root mean square fluctuation [RMSF], radius of gyration [Rg], principal-component analysis [PCA], dynamic cross-correlation [DCC], definition of the secondary structure of proteins [DSSP], and Molecular Mechanics Poisson-Boltzmann Surface Area [MM-PBSA]), and immune simulation analyses generated promising results, ensuring the safe and stable response of the vaccine with specific immune receptors after potential administration within the human body. The vaccine's high binding affinity with TLRs was revealed in the docking study, and a very stable interaction throughout the simulation proved the potential high efficacy of the proposed vaccine. Further, in silico cloning was also conducted to design an efficient mass production strategy for future bulk industrial vaccine production. IMPORTANCE Epstein-Barr virus (EBV) vaccines have been developing for over 30 years, but polyphyletic and therapeutic vaccines have failed to get licensed. Our vaccine surpasses the limitations of many such vaccines and remains very promising, which is crucial because the infection rate is higher than most viral infections, affecting a whopping 90% of the adult population. One of the major identifications covers a holistic analysis of populations worldwide, giving us crucial information about its effectiveness for everyone's unique immunological system. We targeted three glycoproteins that enhance the virulence of the virus to design an epitope-based polyvalent vaccine against two different strains of EBV, type 1 and 2. Our methodology in this study is nonconventional yet swift to show effective results while designing vaccines.


Assuntos
Infecções por Vírus Epstein-Barr , Vacinas Virais , Humanos , Herpesvirus Humano 4 , Simulação de Acoplamento Molecular , Infecções por Vírus Epstein-Barr/prevenção & controle , Vacinas de Subunidades/química , Epitopos de Linfócito B/química , Epitopos de Linfócito B/metabolismo , Epitopos de Linfócito T/química , Epitopos de Linfócito T/metabolismo , Vacinas Combinadas , Biologia Computacional/métodos
11.
Front Genet ; 13: 935286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938038

RESUMO

This study explored the prognostic and therapeutic potentials of multiple Proteasome 26S Subunit, ATPase (PSMC) family of genes (PSMC1-5) in lung adenocarcinoma (LUAD) diagnosis and treatment. All the PSMCs were found to be differentially expressed (upregulated) at the mRNA and protein levels in LUAD tissues. The promoter and multiple coding regions of PSMCs were reported to be differentially and distinctly methylated, which may serve in the methylation-sensitive diagnosis of LUAD patients. Multiple somatic mutations (alteration frequency: 0.6-2%) were observed along the PSMC coding regions in LUAD tissues that could assist in the high-throughput screening of LUAD patients. A significant association between the PSMC overexpression and LUAD patients' poor overall and relapse-free survival (p < 0.05; HR: >1.3) and individual cancer stages (p < 0.001) was discovered, which justifies PSMCs as the ideal targets for LUAD diagnosis. Multiple immune cells and modulators (i.e., CD274 and IDO1) were found to be associated with the expression levels of PSMCs in LUAD tissues that could aid in formulating PSMC-based diagnostic measures and therapeutic interventions for LUAD. Functional enrichment analysis of neighbor genes of PSMCs in LUAD tissues revealed different genes (i.e., SLIRP, PSMA2, and NUDSF3) previously known to be involved in oncogenic processes and metastasis are co-expressed with PSMCs, which could also be investigated further. Overall, this study recommends that PSMCs and their transcriptional and translational products are potential candidates for LUAD diagnostic and therapeutic measure discovery.

12.
Front Immunol ; 13: 863234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720422

RESUMO

Mucormycosis is a potentially fatal illness that arises in immunocompromised people due to diabetic ketoacidosis, neutropenia, organ transplantation, and elevated serum levels of accessible iron. The sudden spread of mucormycosis in COVID-19 patients engendered massive concern worldwide. Comorbidities including diabetes, cancer, steroid-based medications, long-term ventilation, and increased ferritin serum concentration in COVID-19 patients trigger favorable fungi growth that in turn effectuate mucormycosis. The necessity of FTR1 gene-encoded ferrous permease for host iron acquisition by fungi has been found in different studies recently. Thus, targeting the transit component could be a potential solution. Unfortunately, no appropriate antifungal vaccine has been constructed as of yet. To date, mucormycosis has been treated with antiviral therapy and surgical treatment only. Thus, in this study, the FTR1 protein has been targeted to design a convenient and novel epitope-based vaccine with the help of immunoinformatics against four different virulent fungal species. Furthermore, the vaccine was constructed using 8 CTL, 2 HTL, and 1 LBL epitopes that were found to be highly antigenic, non-allergenic, non-toxic, and fully conserved among the fungi under consideration. The vaccine has very reassuring stability due to its high pI value of 9.97, conclusive of a basic range. The vaccine was then subjected to molecular docking, molecular dynamics, and immune simulation studies to confirm the biological environment's safety, efficacy, and stability. The vaccine constructs were found to be safe in addition to being effective. Finally, we used in-silico cloning to develop an effective strategy for vaccine mass production. The designed vaccine will be a potential therapeutic not only to control mucormycosis in COVID-19 patients but also be effective in general mucormycosis events. However, further in vitro, and in vivo testing is needed to confirm the vaccine's safety and efficacy in controlling fungal infections. If successful, this vaccine could provide a low-cost and effective method of preventing the spread of mucormycosis worldwide.


Assuntos
COVID-19 , Mucormicose , COVID-19/prevenção & controle , Epitopos de Linfócito B , Epitopos de Linfócito T , Fungos , Humanos , Ferro/metabolismo , Simulação de Acoplamento Molecular , Mucormicose/microbiologia , Mucormicose/prevenção & controle , SARS-CoV-2 , Vacinas Combinadas , Vacinas de Subunidades
13.
Curr Microbiol ; 79(5): 127, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287179

RESUMO

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening public health. A large number of affected people need to be hospitalized. Immunocompromised patients and ICU-admitted patients are predisposed to further bacterial and fungal infections, making patient outcomes more critical. Among them, COVID-19-associated candidiasis is becoming more widely recognized as a part of severe COVID-19 sequelae. While the molecular pathophysiology is not fully understood, some factors, including a compromised immune system, iron and zinc deficiencies, and nosocomial and iatrogenic transmissions, predispose COVID-19 patients to candidiasis. In this review, we discuss the existing knowledge of the virulence characteristics of Candida spp. and summarize the key concepts in the possible molecular pathogenesis. We analyze the predisposing factors that make COVID-19 patients more susceptible to candidiasis and the preventive measures which will provide valuable insights to guide the effective prevention of candidiasis in COVID-19 patients.


Assuntos
COVID-19 , Candidíase , Candida/genética , Causalidade , Humanos , SARS-CoV-2
14.
Mol Biol Rep ; 49(1): 747-754, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34709573

RESUMO

COVID-19-associated-mucormycosis, commonly referred to as the "Black Fungus," is a rare secondary fungal infection in COVID-19 patients prompted by a group of mucor molds. Association of this rare fungal infection with SARS-CoV-2 infection has been declared as an endemic in India, with minor cases in several other countries around the globe. Although the fungal infection is not contagious like the viral infection, the causative fungal agent is omnipresent. Infection displays an overall mortality rate of around 50%, with many other secondary side effects posing a potential threat in exacerbating COVID-19 mortality rates. In this review, we have accessed the role of free iron availability in COVID-19 patients that might correlate to the pathogenesis of the causative fungal agent. Besides, we have analyzed the negative consequences of using immunosuppressive drugs in encouraging this opportunistic fungal infection.


Assuntos
COVID-19/complicações , Hiperferritinemia , Terapia de Imunossupressão/efeitos adversos , Mucormicose , Fungos/isolamento & purificação , Fungos/patogenicidade , Humanos , Hiperferritinemia/complicações , Hiperferritinemia/microbiologia , Imunossupressores/efeitos adversos , Índia/epidemiologia , Ferro/metabolismo , Mortalidade , Mucormicose/epidemiologia , Mucormicose/etiologia , Mucormicose/microbiologia , Infecções Oportunistas/epidemiologia , Infecções Oportunistas/microbiologia , Rhizopus oryzae/isolamento & purificação , Rhizopus oryzae/patogenicidade
15.
Biochem Biophys Rep ; 27: 101074, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34345719

RESUMO

Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein which is involved in cell signaling, proliferation, maturation, and movement, all of which are crucial for the proper development of cells and tissues. Cleavage of the EpCAM protein leads to the up-regulation of c-myc, e-fabp, and cyclins A and E which promote tumorigenesis. EpCAM can act as potential diagnostic and prognostic biomarker for different types of cancers as it is also found to be expressed in epithelia and epithelial-derived neoplasms. Hence, we aimed to analyze the EpCAM gene expression and any associated feedback in the patients of two major types of lung cancer (LC) i.e., lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), based on the publicly available online databases. In this study, server-based gene expression analysis represents the up-regulation of EpCAM in both LUAD and LUSC subtypes as compared to the corresponding normal tissues. Besides, the histological sections revealed the over-expression of EpCAM protein in cancerous tissues by depicting strong staining signals. Furthermore, mutation analysis suggested missense as the predominant type of mutation both in LUAD and LUSC in the EpCAM gene. A significant correlation (P-value < 0.05) between the higher EpCAM expression and lower patient survival was also found in this study. Finally, the co-expressed genes were identified with their ontological features and signaling pathways associated in LC development. The overall study suggests EpCAM to be a significant biomarker for human LC prognosis.

16.
Genomics Inform ; 19(1): e6, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33840170

RESUMO

Vascular endothelial growth factor (VEGF) is expressed at elevated levels by most cancer cells, which can stimulate vascular endothelial cell growth, survival, proliferation as well as trigger angiogenesis modulated by VEGF and VEGFR (a tyrosine kinase receptor) signaling. The angiogenic effects of the VEGF family are thought to be primarily mediated through the interaction of VEGF with VEGFR-2. Targeting this signaling molecule and its receptor is a novel approach for blocking angiogenesis. In recent years virtual high throughput screening has emerged as a widely accepted powerful technique in the identification of novel and diverse leads. The high resolution X-ray structure of VEGF has paved the way to introduce new small molecular inhibitors by structure-based virtual screening. In this study using different alkaloid molecules as potential novel inhibitors of VEGF, we proposed three alkaloid candidates for inhibiting VEGF and VEGFR mediated angiogenesis. As these three alkaloid compounds exhibited high scoring functions, which also highlights their high binding ability, it is evident that these alkaloids can be taken to further drug development pipelines for use as novel lead compounds to design new and effective drugs against cancer.

17.
J Biomol Struct Dyn ; 39(17): 6585-6605, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32762514

RESUMO

Herpes Simplex Virus (HSV) is a highly infectious virus that is responsible for various types of orofacial and genital infections. Two types of HSV exist i.e. HSV-1 and HSV-2, that are infecting millions of people around the world. However, no satisfactory treatment or counter-measure has yet been discovered to fight against the HSV infections. In this study, three possible polyvalent subunit vaccines against multiple strains of HSV-1 and HSV-2, targeting the envelope glycoproteins- E, B, and D, were designed using the tools of reverse vaccinology and immunoinformatics. The highly antigenic, non-allergenic, non-toxic, non-homolog (to the human proteome), and 100% conserved epitopes across the selected strains and species (eight epitopes from each of the CTL, HTL, and BCL epitope groups), were selected for vaccine construction. These designed vaccines are expected to be effective against the selected viral types simultaneously (as a polyvalent vaccine), without producing any unwanted adverse reaction within the body. Finally, from the three vaccine constructs, one best vaccine was determined by molecular docking analysis and thereafter, the MD simulation and immune simulation studies of the best vaccine construct also yielded satisfactory results, pointing towards quite good stability of the complex. Finally, in silico cloning was performed for analyzing the effective mass production strategy of the best vaccine construct. However, wet lab-based study should be conducted on the suggested vaccines for validating their potentiality, safety, and efficacy.Communicated by Ramaswamy H. Sarma.


Assuntos
Herpesvirus Humano 1 , Epitopos de Linfócito T , Humanos , Simulação de Acoplamento Molecular , Vacinas Combinadas , Vacinas de Subunidades
18.
Front Public Health ; 8: 578438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363080

RESUMO

Here, we examine the potential effect of the COVID-19 pandemic on future birth rates. This highly contagious disease originated in China, and rapidly spread worldwide, leading to extensive lockdown policies being implemented globally with the aim of containing the infection rates and its serious attendant consequences. Based on previous extant literature, this paper overviews the potential demographic consequences of the current progressively widespread epidemic on conception and fertility as driven by the data obtained during similar prior incidents. In general, epidemics manifest a common pattern as far as their impact on population, which is remarkably similar to natural disasters, i.e., a steep decline in birth rates followed by gradual increases and then followed by a baby boom. Additionally, we have also depicted how economic conditions, mental health, fear, and mortality may also influence future birth rates.


Assuntos
Coeficiente de Natalidade , COVID-19/epidemiologia , Fertilidade , Previsões , China/epidemiologia , Humanos , SARS-CoV-2 , Fatores Socioeconômicos , Desemprego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...